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1990), which is implemented in the pdepe routine contained in Matlab. An example
Matlab script for the slightly more general two-dimensional steady-state problem,
discussed in § 9, can be found in the supplementary material. The time-dependent
simulations in this paper were performed with a 400 point grid in z, using a relative
error tolerance of 10−6.

The avalanche is assumed to be of unit depth and the boundary conditions at
the surface and base of the flow are given by the no-flux condition (2.32). A small
sinusoidal perturbation of amplitude 0.01 is given to the initially homogeneous
concentration distribution

φl(z, 0) = φl
0 + 0.01 sin(2� nz), 0 � z � 1, (7.1)

φs(z, 0) = φs
0 − 0.01 sin(2� nz), 0 � z � 1, (7.2)

where n=10. The system is then integrated forward in time to compute the
concentrations of large and small particles φl(x, z) and φs(x, z), and the concentration
of medium-sized particles is then calculated from the summation condition (4.7).

Figure 8 shows the results for the linearly stable initial condition shown in
figure 7(a), where the homogeneous concentrations are φl

0 = 0.2 and φs
0 = 0.4. The

diffusive remixing coefficient Dr = 10−3 is very small, so the solution, which is
represented by a grey scale, has very sharp concentration gradients between regions
of almost constant concentration. The initial sinusoidal disturbance is damped out,
as predicted by the linear-stability analysis. As time increases, the grains sort
themselves out into inversely graded layers with the large particles on top, the
small particles at the bottom and the medium-sized grains in between, as shown in
figure 8(a–c) as well as the concentration profiles at t = 6 along the bottom. This one-
dimensional time-dependent problem is closely related to two-dimensional steady-
state segregation problems in the absence of velocity shear, with time t replacing
the downslope coordinate x. Such segregation problems, both with and without
shear, will be solved exactly in § 8 and are easily adapted to the spatially uniform
time-dependent case here. They show that the solution consists of six regions of
constant concentration that are separated by eight linear concentration shocks. The
discontinuities are illustrated by the straight solid lines in figure 8, which coincide with
high concentration gradients in the diffuse case. The low diffusion limit is therefore
well approximated by the hyperbolic segregation equations provided that the solution
is linearly stable throughout its evolution.

In the linearly unstable region of parameter space, corresponding to the
homogeneous initial condition φl

0 = 0.32 and φs
0 = 0.45, shown in figure 7(b), the

situation is rather different. This time the initial perturbations rapidly grow to form a
series of stripes as shown in figure 9. The stripes strongly reflect the wavelength of the
initial disturbance. This wavelength was chosen to be close to the maximum growth
rate for a diffusion coefficient Dr = 10−3. This was done in order to see evidence of
the instability before it is annihilated by the regions of large and small grains, that
collect at the surface and base of avalanche, due to the no-flux boundary conditions.
The concentration profiles through the depth of the avalanche at t = 1.5 show that
the stripes have an interlocking comb-like, or sawtooth-like, structure. The strongest
striping is in the concentration of the medium-sized grains. For these initial conditions,
the phase speed −(a11 +a22)/2 of the linear instability in § 6 is almost identically zero.
The stripes are therefore nearly parallel to the downslope direction. For other initial
conditions, within the linearly unstable elliptic region shown in figure 6, the phase
speed is considerably larger and the stripes can drift either upwards or downwards
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Figure 8. In (a–c) are shaded contour plots in (t, z) of the time-dependent evolution of the
concentration of large, medium and small particles. The segregation parameters Sls = 1/8,
Slm = 1 and Sms = 3/8, the diffusive remixing coefficient Dr = 10−3, and there is a small
sinusoidal perturbation to inflow concentrations φl

0 = 0.2, φm
0 = 0.4 and φs

0 = 0.4. The plots
use 64 grey levels and a scale with 11 levels is shown in (a). The solid lines show the position
of concentration shocks, which have been adapted to the time-dependent case from the exact
solution derived in § 8. In (d ), the final concentration profile at t = 6 is plotted for the large,
medium and small particles.

as time progresses. Within the stripes, an individual large particle will still move
upwards, but it will not rise at a constant rate, as in the linearly stable homogeneous
case, but will speed up and slow down as it goes. Similarly, small particles do not
percolate downwards at a constant rate. In this example, medium-sized particles
have a tendency to percolate downwards, but as the stripes become stronger they
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Figure 9. In (a–c) are shaded contour plots in (t, z) of the time-dependent evolution of the
concentration of large, medium and small particles. The segregation parameters Sls = 1/8,
Slm = 1 and Sms = 3/8, the diffusive remixing coefficient Dr = 10−3, and there is a small
sinusoidal perturbation to inflow concentrations φl

0 = 0.32, φm
0 = 0.23 and φs

0 = 0.45. The plots
use 64 grey levels and a scale with 11 levels is shown in (a). In (d ), the concentration profile
at t = 1.5 is plotted for the large, medium and small particles.

get locked in and are concentrated still further. The triangular space–time region
where the stripes occur has only a finite duration, and eventually the medium and
small particles separate out into an almost bi-disperse phase, which is linearly stable,
and the strong perturbations are then dissipated by segregation and diffusion. For
sufficiently long time, the final state also approaches an inversely graded state with
high concentrations of large at the top, high concentrations of fines at the bottom
and the medium-sized grains in between.
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8. Shock solutions for distribution grading in a ternary mixture
The time-dependent numerical solution in figure 8 shows that when the diffusive

remixing coefficient Dr is relatively small, the segregation from a homogeneous initial
state may reasonably be described by regions of constant concentration that are
separated by jumps or shocks. In this section, the exact solution in the absence of
diffusion is derived for a closely related steady two-dimensional problem.

8.1. Problem formulation

Savage & Lun (1988) and Gray & Thornton (2005) investigated the steady spatially
evolving segregation of a bi-disperse mixture as it flowed down an inclined chute
from a homogenously mixed inflow condition. The avalanche was assumed to be of
constant depth and the downslope velocity profile with depth u(z) was prescribed. The
solutions have a relatively simple structure with regions of constant concentration
separated by discontinuities. It is of considerable interest to investigate an analogous
problem for a ternary mixture of large, medium and small particles. By virtue of the
scalings (2.24), the avalanche is assumed, without loss of generality, to be of unit
depth, h = 1, and has unit depth-averaged velocity, ū = 1. Assuming that the inflow
lies at x =0, the bulk velocity components are of the form

u(z) � 0, v = 0, w = 0 in 0 � z � 1, x � 0, (8.1)

where the downslope velocity component has a monotonic profile with increasing z.
The summation condition (2.3) implies that

φl + φm + φs = 1, (8.2)

which can be used to eliminate the concentration of medium particles in the large and
small particle segregation equations (2.28). In the flow field (8.1) and in the absence
of diffusion, these reduce to

u
∂φl

∂x
+

∂

∂z
(Slmφl(1 − φl − φs) + Slsφ

lφs) = 0, (8.3)

u
∂φs

∂x
+

∂

∂z
(−Slsφ

sφl − Smsφ
s(1 − φl − φs)) = 0, (8.4)

and the normal velocity (2.25) of each of the constituents becomes

wl = Slmφm + Slsφ
s, (8.5)

wm = −Slmφl + Smsφ
s, (8.6)

ws = −Slsφ
l − Smsφ

m. (8.7)

Note that the steady two-dimensional homogeneous inflow problem considered here
is closely related to the time-dependent spatially uniform problem discussed in § 7.
Indeed, in the absence of diffusion they are the same if (x, z) is mapped to (t, z) and
the downstream velocity is assumed to be plug-like, i.e. u =1.

At the inflow, the concentration of large and small particles is homogeneous through
the depth of the avalanche

φl(0, z) = φl
0, φs(0, z) = φs

0, 0 � z � 1, (8.8)

where φl
0 and φs

0 are constants. This necessarily implies that the concentration of
medium-sized particles at the inflow is

φm(0, z) = 1 − φl
0 − φs

0 = φm
0 , 0 � z � 1, (8.9)
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Figure 10. A sketch of the structure of the shock solution in (x,ψ)-mapped coordinates for
distribution grading. The inflow is on the left where the large, medium and small particles
enter in a homogeneously mixed state. Sufficiently far downstream the particles separate
into inversely graded layers with the largest at the top, the smallest at the bottom and the
medium-sized grains sandwiched in between. The solution consists of a series of shocks that
separate regions R0–R5 of constant concentration. The subscripts i =0–5 are used to identify
the concentration φν

i of particles ν in each region. The points A, B and C mark key points
where the shocks intersect.

by (8.2). Sufficiently far downstream, the particles segregate out into inversely graded
layers, with the largest grains at the top, the smallest particles at the bottom and the
medium-sized ones in a layer between the two. This suggests that a solution exists
with the shock structure shown in figure 10. The shocks are shown with straight line
segments and in the regions R0–R5 that they enclose, the concentrations of large,
medium and small particles are constant. The subscripts i = 0–5 are used to identify
the constant concentration φν

i of particles of phase ν in each of the regions R0–R5

and the letters A, B and C identify key shock intersections.
The position of the shocks and the magnitude of the discontinuities are controlled

by the jump conditions (2.30). In the case where there is no diffusion, Dr = 0, and
the shock, which lies at height z = zshock(x), does not propagate (vn =0), the jump
conditions for the large and small particles reduce to

�φl�u d

dx
(zshock) = �Slmφlφm + Slsφ

lφs�, (8.10)

�φs�u d

dx
(zshock) = �−Slsφ

sφl − Smsφ
sφm�, (8.11)

respectively. The jump condition for the medium-sized particles is a linear combination
of (8.10) and (8.11) and does not provide any additional information. The problem
is considerably simplified by working in depth-averaged velocity, or streamfunction,
coordinates (Gray & Thornton 2005; Gray & Ancey 2009) defined by the integral

ψ =

∫ zshock

0

u(z′) dz′. (8.12)

The base of the avalanche therefore lies at ψ = 0 and, since ū= 1, the free surface lies
at ψ = 1 in the mapped coordinate system. Taking the derivative of ψ with respect to
x implies dψ/dx = u dzshock/dx by Leibniz’s integral theorem (see § 3.3.7, Abramowitz
& Stegun 1970). It follows that in (x, ψ) coordinates, the jump conditions (8.10)–(8.11)
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become

�φl�dψ

dx
= �Slmφlφm + Slsφ

lφs�, (8.13)

�φs�dψ

dx
= �−Slsφ

sφl − Smsφ
sφm�, (8.14)

which are independent of the velocity profile u(z). Solutions can therefore be
constructed in (x, ψ) coordinates for arbitrary downstream velocity fields and then
mapped back to physical (x, z) space for specific cases.

8.2. Surface and basal double-shock structure

As the homogeneous mixture is swept downstream, the particles segregate relative to
one another, with the large ones moving up, the small ones moving down and the
medium-sized ones moving up or down depending on the local concentration. Within
the bulk of the avalanche, the mixture stays at its initial inflow concentrations φl

0, φm
0

and φs
0. However, at the base, the boundary conditions (2.33) imply that there is no

further supply of large- or medium-sized particles. Assuming that the large particles
rise fastest in the homogeneous mixture, the medium and small particles will separate
out across a concentration shock. This is shown by the line segment 0A in figure 10.
Since there are no large particles on the forward side of the shock (φl

1 = 0), the large
particle jump condition (8.13) reduces to the ordinary differential equation

dψ

dx
= Slmφm

0 + Slsφ
s
0 = wl

0, (8.15)

where (8.5) implies that the right-hand side is equal to the normal velocity of the
large particles wl

0 in the homogeneous mixture. This identification is important and
will be used later. The concentrations φm

0 and φs
0 are known constants, and, provided

that the segregation rates are constant, this can be integrated subject to the boundary
condition that the shock starts at the base of the inflow, ψ(0) = 0, to give the line

ψ0A = (Slmφm
0 + Slsφ

s
0)x. (8.16)

The subscript 0A is used to identify it. The small particle jump condition (8.14)
reduces to the ordinary differential equation

(φs
1 − φs

0)
dψ

dx
= −Sls(φ

s
1φ

l
1 − φs

0φ
l
0) − Sms(φ

s
1φ

m
1 − φs

0φ
m
0 ), (8.17)

where φm
1 = 1 − φs

1 since φl
1 = 0 as shown in figure 10. In this equation, the gradient

dψ/dx is known and can be substituted from (8.15) to obtain a quadratic equation
for the small particle concentration φs

1 in the region R1,

Sms(φ
s
1)

2 − (Slmφm
0 + Slsφ

s
0 + Sms)φ

s
1 + (Slmφm

0 + Sls(1 − φm
0 ) + Smsφ

m
0 )φs

0 = 0. (8.18)

The shock conditions therefore determine both the position of the shock 0A and the
concentrations of the small- and medium-sized particles, φs

1 and φm
1 .

Within R1 the medium-sized particles rise up and the small particles percolate
downwards, except near the basal boundary 0B where there is no further supply
of medium-sized particles, and the small ones separate out across a concentration
shock. Since there are no large particles on either side of 0B, the large particle shock
condition (8.13) is trivially satisfied. While the small particle jump condition (8.14)
implies

dψ

dx
= Smsφ

s
1 = wm

1 , (8.19)
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where the right-hand side is equal to the normal velocity of the medium-sized particles
wm

1 in the bi-disperse region R1. This can be integrated subject to the condition that
ψ(0) = 0, to show that the shock 0B is also a straight line

ψ0B = Smsφ
s
1x. (8.20)

The two shocks 0A and 0B , shown in figure 10, that emanate from the base of the
inflow have therefore been determined. This structure will be termed a double shock.

An exactly analogous procedure can be used to determine the double-shock
structure at the top of the avalanche. The boundary conditions (2.33) imply that
at the surface there is no further supply of medium and small particles. Assuming
that the small particles percolate downwards fastest in the homogeneous mixture,
the large and the medium particles will separate out across the shock 1A. The small
particle jump (8.14) gives an equation for the shock position

dψ

dx
= −Slsφ

l
0 − Smsφ

m
0 = ws

0, (8.21)

where the right-hand side is just the normal velocity ws
0 of the small particles in the

homogeneous region. This can be integrated subject to the boundary condition that
ψ(0) = 1, to show that the shock 1A is the straight line

ψ1A = 1 − (Slsφ
l
0 + Smsφ

m
0 )x. (8.22)

Substituting the gradient (8.21) into the shock condition for the large particles

(φl
2 − φl

0)
dψ

dx
= Slm(φl

2φ
m
2 − φl

0φ
m
0 ) − Slsφ

l
0φ

s
0, (8.23)

and, using the fact that φm
2 = 1 − φl

2, yields a quadratic equation

Slm(φl
2)

2 − (Slsφ
l
0 + Smsφ

m
0 + Slm)φl

2 + (Slmφm
0 + Sls(1 − φm

0 ) + Smsφ
m
0 )φl

0 = 0 (8.24)

for the concentration of large particles, φl
2. The concentration of medium-sized

particles φm
2 = 1 − φl

2 since φs
2 = 0. In the bi-disperse region R2, the large particles

rise upwards and the medium particles percolate downwards, except near the upper
boundary, where there are no more medium particles and the large grains separate
out across the concentration shock 1C. This time the small particle jump condition
(8.14) is trivially satisfied, while the large particle jump condition (8.13) implies that

dψ

dx
= −Slmφl

2 = wm
2 , (8.25)

where the right-hand side is just the normal velocity of the medium-sized particles
wm

2 in the bi-disperse region R2. This can be integrated subject to the condition that
ψ(0) = 1, to show that the shock 1C is also a straight line,

ψ1C = 1 − Slmφl
2x, (8.26)

completing the double-shock structure near the surface.

8.3. Distance for the large and the small particles to separate

The shocks OA and 1A merge at point A at a downstream distance

xA =
1

Slmφm
0 + Sls(1 − φm

0 ) + Smsφ
m
0

, (8.27)

which is independent of φl
0 and φs

0. The denominator in (8.27) is the difference between
the large and small particle velocities, wl

0 = Slmφm
0 + Slsφ

s
0 and ws

0 = −Slsφ
l
0 − Smsφ

m
0 ,
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Figure 11. A contour plot of the ratio xA/xls , between the distance for the large and small
particles to segregate in a three-component mixture xA and that in a two-component mixture
xls = 1/Sls , as a function of the inflow concentration of medium-sized particles φm

0 and the
parameter Θ = (Slm + Sms)/Sls . Note that xA is not the distance for complete segregation in a
three-component mixture, but does provide a lower bound.

in the homogeneous region. Point A therefore represents the distance over which a
large particle rising up from the bottom meets a small particle percolating down
from the top. The equivalent distance in a bi-disperse mixture is the point, xls = 1/Sls ,
which is also the point of complete separation. In the three-component mixture, the
segregation has not finished. However, it is still interesting to consider the ratio of
these length scales as it provides a lower bound on the total segregation distance in
the three-component case. By defining the parameter

Θ =
Slm + Sms

Sls

, (8.28)

which typically lies in the range [0, 2] for the solution presented here, the ratio of the
length scales can be written in the particularly simple form

xA

xls

=
1

1 + φm
0 (Θ − 1)

. (8.29)

This is plotted in figure 11 as a function of the inflow concentration of medium-
sized particles φm

0 and the parameter Θ . To understand the contour plot, it is useful
to consider some special cases. If the inflow concentration φm

0 is equal to zero,
the three-component problem has no medium-sized particles and it degenerates to
the two-component case. The ratio is therefore equal to unity along the Θ-axis. In
the case where all the segregation rates are the same Sls = Slm = Sms , the parameter
Θ = 2, and the large and small percolation velocities reduce to wl

0 = Sls(1 − φl
0) and

ws
0 = −Sls(1 − φs

0), respectively. It follows that as the volume fraction of medium-
sized particles increases, the large and small particles can move at velocities closer
to their maximum rates, since φl

0 and φs
0 are lower on average. The net velocity

wl
0 − ws

0 = Sls(1+φm
0 ) is therefore enhanced and the large and small particles separate
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out from one another faster than the bi-disperse case. Note that this does not
imply that the time for complete segregation is reduced. When Θ = 0, which occurs
when Slm = Sms =0, the velocity of the large and small particles is wl

0 = Slsφ
s
0 and

ws
0 = −Slsφ

l
0. These look very similar to those for Θ = 2, but this time, as the volume

fraction of φm
0 increases, the large and the small particles move slower on average.

Indeed the net velocity wl
0 − ws

0 = Sls(1 − φm
0 ) tends to zero as φm

0 −→ 1 and the
segregation distance in the three-component mixture xA −→ ∞. In summary, if Θ < 1
the medium-sized particles hinder the separation of large and small grains. While if
Θ > 1, the medium particles allow the large and small grains to percolate faster than
in the bi-disperse case, during this initial phase of segregation.

8.4. Separation of the medium-sized particles

The height of point A can either be expressed using (8.16) as

ψA = (Slmφm
0 + Slsφ

s
0)xA, (8.30)

or using (8.22) as

ψA = 1 − (Slsφ
l
0 + Smsφ

m
0 )xA. (8.31)

The equations for the position of point A, (8.27), (8.30) and (8.31), can be used to
significantly simplify the quadratic equations (8.18) and (8.24) for the concentrations
φl

2 and φs
1, which become

SlmxA(φl
2)

2 − (1 − ψA + SlmxA)φl
2 + φl

0 = 0, (8.32)

SmsxA(φs
1)

2 − (ψA + SmsxA)φs
1 + φs

0 = 0. (8.33)

Point A is also the position at which two reflected shocks are generated, which are
denoted by AB and AC in figure 10. The section AB separates the mixture of medium
and small particles from a pure region of medium-sized particles. The large particle
jump condition is therefore trivially satisfied. While the small particle jump condition
implies that

dψ

dx
= −Smsφ

m
1 = ws

1, (8.34)

where the right-hand side is simply the normal velocity ws
1 of the small particles in

the bi-disperse region R1. Integrating subject to the condition that ψ(xA) = ψA gives
the straight line

ψAB = ψA − Smsφ
m
1 (x − xA). (8.35)

The lines 0B and AB intersect at a downstream distance

xB =
ψA

Sms

+ φm
1 xA. (8.36)

The height at which this occurs can be determined by substituting (8.36) into the
equation for the shock 0B , given by (8.20), to obtain

ψB = (ψA + SmsxA)φs
1 − SmsxA(φs

1)
2. (8.37)

Using the quadratic equation (8.33), gives the simple result

ψB = φs
0. (8.38)

The small particle jump condition for the shock ‘B∞’, separating the layer of medium-
sized particles from the layer of fines below, implies that the gradient dψ/dx is
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zero. Integrating subject to the condition that ψ(xB) = ψB implies that the shock is
horizontal and is given by

ψB∞ = ψB, x > xB. (8.39)

An analogous argument holds for the shock AC between the mixture of large and
medium-sized particles in R2 and the pure state of large particles at the surface. The
large particle jump condition implies that

dψ

dx
= Slmφm

2 = wl
2, (8.40)

where the right-hand side is just the normal velocity of the large particles in the bi-
disperse region R2. This can be integrated subject to the condition that ψ(xA) = ψA,
to give the straight line

ψAC = ψA + Slmφm
2 (x − xA). (8.41)

It intersects with 1C at

xC =
1 − ψA

Slm

+ φm
2 xA. (8.42)

The height of the intersection can be found by substituting (8.42) into (8.26) and
using the quadratic equation (8.32) to show that

ψC = 1 − φl
0. (8.43)

At the inversely graded interface between the pure phases of large- and medium-sized
particles, the large particle jump condition implies that dψ/dx = 0. Integrating subject
to the condition that ψ(xC) = ψC implies that the final shock

ψC∞ = ψC, x > xC, (8.44)

which completes the solution. The complete structure consists of six constant
concentration regions that are separated by eight shocks given by (8.16), (8.20),
(8.22), (8.26), (8.35), (8.39), (8.41) and (8.44).

8.5. Inverse mappings to physical coordinates

The advantage of using depth-integrated velocity coordinates (8.12) is that the solution
is valid for all monotonically increasing velocity profiles with z. To view the solution
for specific cases, the downstream velocity profile u(z) must be prescribed. Figure 12
shows four examples, one for an exponential velocity profile and three linear profiles.
The linear profiles are all special cases of the linear downstream velocity of Gray &
Thornton (2005), which was defined by the function

u = α + 2(1 − α)z, 0 � α � 1. (8.45)

The parameter α allows different amounts of shear and basal slip, while still
ensuring that the depth-averaged velocity is unity. There are two special cases, α = 0
corresponds to simple shear and α =1 implies plug flow. The mapped coordinates are
calculated by performing the integral (8.12) to give

ψ = αz + (1 − α)z2. (8.46)

For plug flow, when α =1, the mapped and the physical coordinates are the same
and the shocks are all straight lines as shown in figure 12(d ). This situation can also
be mapped from (x, z) to (t, z) to obtain time-dependent shock solutions, such as
those indicated by the solid lines in figure 8. When there is shear, (8.46) is a quadratic
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Figure 12. The left-hand panels show the shock heights as a function of (x, z) for segregation
parameters Sls = 1, Slm = 0.8 and Sms = 0.5, inflow concentrations φl

0 = 1/2, φs
0 = 1/6 and

φm
0 = 1/3, and for the prescribed downstream velocity profiles u(z) shown in the corresponding

right-hand panels. The graphs in (a) show an exponential velocity profile with β = 3.3,
(b) corresponds to simple shear, α =0, (c) corresponds to shear with basal slip, α = 0.5,
and (d ) corresponds to plug flow, α = 1.

equation in z and the inverse mapping is

z =
−α +

√
α2 + 4(1 − α)ψ

2(1 − α)
, α �= 1. (8.47)

This is equivalent to a nonlinear stretch of the ψ coordinate, so the shocks which were
straight lines in the mapped coordinates now become curved in physical coordinates,
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as shown in figure 12(b, c). The only lines that do not get stretched into curves are
those that are parallel to the base, such as the final inversely graded shocks ψB∞ and
ψC∞, which get translated to new heights zB∞ and zC∞ in the physical domain. The
reason for this is that there is a higher mass flux near the surface than at the base.
At the inflow the particles enter at a homogenous concentration at all levels in the
flow, and, because this is a steady problem, the depth-averaged flux of those particles
is constant all along the chute. It follows that if the particles rise on average, the
mass flux will be concentrated in a higher faster moving part of the flow, and hence
the layer will be thinner than if they moved to lower slower moving regions. The
large particle layer near the surface therefore becomes much thinner in the mapped
domain, while the small particle layer near the base becomes much thicker.

Wiederseiner et al. (2011) found that the effect of the nonlinear velocity profile was
quite strong in their chute flow experiments, and they needed to use an exponential
fit to the velocity data that they measured in their experiments to get good agreement
with the layer heights in their final steady uniform state. In order to compare their
experiments with the theory of Gray & Chugunov (2006), they used a downstream
velocity profile of the form

u =
β exp(βz)

exp(β) − 1
, β > 0. (8.48)

The depth-integrated velocity coordinates for this function are

ψ =
exp(βz) − 1

exp(β) − 1
, (8.49)

and the corresponding inverse mapping is

z =
1

β
ln(1 − ψ + ψ exp(β)). (8.50)

Figure 12(a) plots the shock solution for the exponential profile with Wiederseiner
et al.’s (2011) measured coefficient of β = 3.3. The compression of the surface layer
of large particles is very strong, taking a layer that occupied half the height in the
mapped coordinates and squeezing it into the top fifth of the flow. Conversely, the
small particle layer, which occupied a sixth of the height in the unmapped coordinates,
is stretched out over half the flow height.

It should be noted that downstream positions of the shock intersection points are
unchanged by the mapping, and so they lie at the same downstream distances in each
of the three sets of plots in figure 12. Since Θ = (Slm + Sms)/Sls is equal to 1.3, the
graph in figure 11 shows that the point at which the large and the small particles
separate out lies before the point xls = 1/Sls = 1, where they would separate out in a
bi-disperse mixture. However, the final distances for the complete segregation of the
large- and medium-sized particles, xC , and the medium and small grains xB , occur
significantly further down the chute than in the bi-disperse case. This is indicative of
the general tendency of multi-component mixtures to extend the maximum distance
for segregation.

8.6. Parameter range of validity

The solution that has been constructed is not valid over the whole range of segregation
parameters and inflow concentrations. The crucial condition for existence of the
solution is that the topology of the shocks is preserved. This is true provided point
A is higher than point B , but lower than point C, the gradient of the shock AB is



Multi-component particle-size segregation in granular avalanches 571

negative and the gradient of the shock AC is positive. Using (8.34) and (8.40) implies
that these statements are equivalent to

ψB � ψA � ψC, φm
1 � 0, φm

2 � 0. (8.51)

These conditions automatically ensure that the order of the discontinuities that have
been assumed in the double-shock structures is preserved. Substituting the heights of
points A and B from (8.30) and (8.38) into the condition ψB < ψA implies that

Slm � φs
0(Slm − Sls + Sms). (8.52)

By collecting the coefficients of Slm together, substituting 1 − φs
0 = φm

0 + φl
0 and using

the definitions of the constituent velocities (8.5) and (8.6), it follows that this is
equivalent to the normal velocity of the larger particles being greater than the normal
velocity of medium-sized particles in the homogeneous mixture

wl
0 � wm

0 , (8.53)

which was assumed in our derivation. If the factor Slm −Sls +Sms in (8.52) is negative,
then the right-hand side is at most equal to zero, and the condition is trivially satisfied
as Slm is positive. If Slm − Sls +Sms is positive, then the right-hand side is largest when
φs

0 equals unity, and (8.52) is satisfied, for all concentrations, provided

Sls � Sms. (8.54)

Similarly, substituting (8.30) and (8.43) into the condition ψA <ψC implies that

Sms � φl
0(Slm − Sls + Sms), (8.55)

which, using (8.6) and (8.7), is equivalent to the condition that the small particles in the
homogeneous mixture percolate downwards faster than the medium-sized particles,

ws
0 � wm

0 . (8.56)

If the factor Slm − Sls + Sms is negative, then condition (8.55) is trivially satisfied since
Sms is positive. If the factor Slm −Sls +Sms is positive, then the right-hand side is largest
when φl

0 is equal to unity, and the condition is satisfied, for all inflow concentrations,
provided

Sls � Slm. (8.57)

The condition that φm
1 � 0 in the bi-disperse region R1 is equivalent to the

requirement that φs
1 � 1. The negative root of the quadratic equation (8.33) can be

written in the form

φs
1 =

ψA + SmsxA −
√

(ψA − SmsxA)2 + 4(ψA − φs
0)SmsxA

2SmsxA

, (8.58)

where the discriminant has been re-factored. Equation (8.38) implies that φs
0 = ψB ,

which is less than or equal to ψA by the first condition in (8.51). The smallest value
reached by the square-root term in (8.58) is ψA − SmsxA, and hence the largest that
φs

1 can be is unity. It is also clear from this equation that when φs
0 equals zero, φs

1

is also equal to zero, and hence that φs
1 ∈ [0, 1]. It follows that φm

1 ∈ [0, 1] and the
third condition in (8.51) is satisfied. Similarly, the condition φm

2 � 0 in the bi-disperse
region R2 is equivalent to the condition φl

2 � 1. The negative root of the quadratic
equation (8.32) implies that the concentration of large particles is

φl
2 =

1 − ψA + SlmxA −
√

(1 − ψA − SlmxA)2 + 4(1 − φl
0 − ψA)SlmxA

2SlmxA

, (8.59)
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where the discriminant has again been re-factored. Equation (8.43) implies that
1 − φl

0 = ψC , which is greater than or equal to ψA by the second condition in (8.51).
The smallest value reached by the square-root term in (8.59) is, 1 − ψA − SlmxA, and
hence the largest concentration can be unity. It is also clear that when φl

0 is equal to
zero, the large particle concentration is equal to zero, and hence φl

2 ∈ [0, 1]. It follows
that φm

2 ∈ [0, 1] and hence the final condition in (8.51) is satisfied.
All conditions for existence are therefore satisfied provided the normal velocities of

the constituents in the homogeneous region are such that wl
0 � wm

0 � ws
0, and this can

be guaranteed, for all concentrations, provided the segregation parameters lie in the
domain

Ω+
3 : Sls � Slm and Sls � Sms. (8.60)

Note that this is slightly larger than the region Ω3, defined in (5.20). The time-
dependent shock solution illustrated by solid lines in figure 8 is obtained by setting
α = 1 and replacing x by t , and ψ by z, in the two-dimensional steady-state solution
derived here. It closely approximates the perturbed numerical solution when Dr is
small and provides an example of this solution in a region outside of Ω+

3 that holds
for certain values of the initial conditions. It cannot, of course, capture the linear
sawtooth instability in figure 9, which develops for the same parameters, but slightly
different initial conditions.

8.7. Upper and lower bounds for the total segregation distance

It would be useful to have a simple estimate for the total segregation length that
could easily be computed from the initial conditions. Let us therefore return to the
quadratic equation (8.18), substitute for the concentration of medium-sized particles
and write it in the form

Sms

((
φs

1

)2 −
(
φs

0

)2)−
(
Slm

(
1 − φs

0

)
+ Slsφ

s
0 + Sms

)(
φs

1 − φs
0

)
+ φl

0

(
Slm

(
φs

1 − φs
0

)
+ φs

0

(
Sls − Sms

))
= 0, (8.61)

where all the terms involving φl
0 are gathered together. If the large particle inflow

concentration φl
0 is equal to zero, it is then easy to see that the concentration of small

particles φs
1 in region R1 is equal to the inflow concentration

φs
1 = φs

0. (8.62)

Figure 13 shows a contour plot of the negative root of the quadratic equation (8.58)
as a function of the inflow concentrations φl

0 and φs
0 for a specific case of segregation

parameters that lie in Ω+
3 . Along the φl

1-axis the solution is zero, along the φs
0-axis

the concentration is equal to the inflow concentration, and above the line φl
0 = 1 − φs

0

the concentration states are not admissible. The plot shows that for a fixed value of
φs

0, the bi-disperse concentration is greater than or equal to the inflow concentration

φs
1 � φs

0. (8.63)

This suggests that it is possible to be more specific about the range of values of φs
1 in

R1 than in § 8.6 and hence provide a useful estimate of the total segregation distance
of the small particles.

We have already shown in (8.62) that, when there are no large particles, the bi-
disperse concentration φs

1 is equal to the inflow concentration φs
0 for all values of the

segregation parameters. Let us now consider what happens as the concentration of
large particles is increased. Taking the partial derivative of the quadratic equation
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Figure 13. A contour plot of the small particle concentration, φs
1, in the bi-disperse region

R1 as a function of the inflow concentrations φl
0 and φs

0 and for segregation parameters

Sls =1, Slm = 0.8 and Sms = 0.5. Note that the region above the line φl
0 = 1 − φs

0 corresponds to
concentration states that are not possible.

(8.61) with respect to the large particle inflow concentration φl
0 implies that

∂φs
1

∂φl
0

=
Slm(φs

1 − φs
0) + φs

0(Sls − Sms)

Sms(1 − φs
1) + [Slmφm

0 + Slsφ
s
0 − Smsφ

s
1]

. (8.64)

Whether φs
1 increases or decreases from the inflow value φs

0 at φl
0 = 0 is dependent

on whether this derivative is positive or negative. The square-bracketed term in the
denominator is the difference in the gradients of the shocks 0A and 0B by (8.15)
and (8.19). Provided the solution exists, i.e. the conditions (8.51) are satisfied and the
order of the double shock structure is preserved, the square-bracketed term is positive.
It follows that the denominator is strictly positive, since φs

1 ∈ [0, 1], except in the
completely degenerate case of pure fines. The behaviour is therefore controlled by
the sign of the numerator in (8.64). If Sls > Sms , then on the line φl

0 = 0, where φs
1 =φs

0,
the numerator is strictly positive and hence φs

1 will increase in the direction of
increasing φl

0, again provided that the system is not in the completely degenerate case
of pure fines. The solution may therefore be continued to an adjacent strip where
φs

1 >φs
0. Since the numerator is still positive here, and on every other adjacent strip,

the small particle concentration φs
1 ∈ [φs

0, 1]. A similar argument for the case Sls = Sms

shows that φs
1 is equal to φs

0, for all values of φl
0, since the numerator is always zero,

while for Sls < Sms the numerator is always negative and therefore φs
1 ∈ [0, φs

0].
Let us restrict ourselves to the case where Sls � Sms and φs

1 ∈ [φs
0, 1]. Consider what

happens to the shock 0B when φs
1 is replaced with its lower bound φs

0 in (8.20), to
give the line

ψ = Smsφ
s
0x. (8.65)

This represents the minimum height of the shock and is shown by the lower dot-
dashed line in figure 14. It intersects with the shock B∞, which lies at a height ψB = φs

0
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Figure 14. A sketch of the shocks (solid lines) in (x,ψ)-mapped coordinates with the key
shock intersection points A, B and C. The dot-dashed lines represent lower bounds for the
modulus of the shock gradients that emanate from (0, 0) and (0, 1), and they therefore intersect
with horizontal inversely graded shocks, ‘B∞’ and ‘C∞’, furthest downstream at xms and xlm,
respectively. The distance xls is the segregation distance of the large and small particles, which
may be before or after the downstream position of point A.

at a downstream distance

xms =
1

Sms

. (8.66)

This is just the distance over which a bi-disperse mixture of medium and small
particles would segregate out, and it forms an upper bound for the segregation of the
medium and the small particles in a ternary mixture when Sls � Sms . Note that when
Sls < Sms , then (8.66) represents a lower bound instead.

A very similar argument gives an upper bound at the surface. Rewriting the
quadratic equation (8.24) in the form

Slm

((
φl

2

)2 −
(
φl

0

)2) −
(
Sms

(
1 − φl

0

)
+ Slsφ

l
0 + Slm

)(
φl

2 − φl
0

)
+ φs

0

(
Sms

(
φl

s − φl
0

)
+ φl

0(Sls − Slm)
)

= 0, (8.67)

it is easy to see that it has the solution

φl
2 = φl

0, (8.68)

when the inflow concentration φs
0 is zero. Taking the partial derivative of the quadratic

equation (8.67) with respect to φs
0 implies that

∂φl
2

∂φs
0

=
Sms

(
φl

2 − φl
0

)
+ φl

0(Sls − Slm)

Slm

(
1 − φl

2

)
+

[
Slsφ

l
0 + Smsφ

m
0 − Slmφl

2

] . (8.69)

The square-bracketed term is the difference between the gradients of 1A and 1C and
is positive provided that existence conditions (8.51) are satisfied. Since φl

2 ∈ [0, 1], it
follows that the denominator is strictly positive, except in the completely degenerate
case of all large particles. If Sls > Slm then the numerator is strictly positive on the
line φs

0 = 0, since φl
2 = φl

0. The solution may therefore be continued to an adjacent
strip where φl

2 > φl
0. Since the numerator is still positive here, and on every other

adjacent strip, φl
2 ∈ [φl

0, 1]. Similar arguments show that if Sls = Slm then φl
2 = φl

0, and
if Sls < Slm then the large particle concentration φl

2 ∈ [0, φl
0]. Restricting ourselves to

the case Sls � Slm, and using the lower bound φl
0 to replace φl

2 in (8.26) for the shock
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0C, gives the line

ψ = 1 − Slmφl
0x. (8.70)

This represents the maximum height that the shock can reach and is shown by the
upper dot-dashed line in figure 14. It intersects with the shock ‘C∞’, which lies at a
height ψC =1 − φl

0 at a downstream distance

xlm =
1

Slm

, (8.71)

which is just the distance that a bi-disperse mixture of large- and medium-sized
particles would separate out. It forms an upper bound for the segregation of the
large and the medium grains in a ternary mixture when Sls � Slm. When Sls < Slm then
(8.71) represents a lower bound. It may therefore be concluded that an upper bound
for the total segregation distance from a homogeneous inflow in a ternary mixture,
with segregation parameters that lie in Ω+

3 , is

xtotal � max(xlm, xms) = max

(
1

Slm

,
1

Sms

)
. (8.72)

Physically, this is simply the idea that, in a ternary mixture where the large and the
small grains segregate fastest, an upper bound for the maximum segregation distance
is given by the segregation length scale of the bi-disperse sub-mixture that segregates
least well. Note that in the case where Sls = Slm = Sms , the upper bound is equal
to the total segregation length scale, xls =1/Sls , which is precisely the same as the
bi-disperse case. The situation for mixtures with segregation parameters outside Ω+

3

is more complex. This is firstly because it cannot be guaranteed that a solution with
the proposed shock structure exists, or that the problem is even well-posed, as shown
in § 5. Moreover, the estimates, (8.66) and (8.71), may be lower bounds.

9. Steady solutions of the segregation–remixing equations
Segregation theory yields considerable insight into the physical system, but to get

good agreement with experiments it is important to include the diffusive terms. These
account for the fluctuations in the avalanche that induce individual particles to take
random walks, which smooth out the sharp concentration discontinuities that would
otherwise form. It is therefore of interest to solve the same steady homogeneous inflow
problem, but with the inclusion of the diffusive terms. Using the steady uniform bulk
flow field (8.1), the segregation–remixing equations for the large and small particles
(3.3)–(3.4) can be written in the flux conservative form

u
∂φl

∂x
=

∂

∂z

(
−Slmφl(1 − φl − φs) − Slsφ

lφs + Dr

∂φl

∂z

)
, (9.1)

u
∂φs

∂x
=

∂

∂z

(
Slsφ

sφl + Smsφ
s(1 − φl − φs) + Dr

∂φs

∂z

)
. (9.2)

These are precisely of the form required by standard Galerkin finite element solvers
for initial boundary-value problems for systems of parabolic equations (e.g. Skeel &
Berzins 1990). It is therefore very easy to solve practical multi-component segregation
problems using standard programme libraries. In this paper, the pdepe routine
contained in Matlab has been used. The initial conditions are given by (8.8) and
the boundary conditions at the surface and the base of the avalanche need to be
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formulated in terms of the fluxes of large and small particles, which are

Fl = −Slmφl(1 − φl − φs) − Slsφ
lφs + Dr

∂φl

∂z
, (9.3)

Fs = Slsφ
sφl + Smsφ

s(1 − φl − φs) + Dr

∂φs

∂z
, (9.4)

respectively. It is easy to see from this that the boundary conditions (2.32) reduce to

Fν = 0, z = 0, 1, ν = l, s. (9.5)

This system can be integrated forward in x from the inflow at x = 0 to any distance
downstream, to compute the steady-state concentrations of large and small particles
φl(x, z) and φs(x, z). The concentration of medium-sized particles can then be
calculated from the summation condition (8.2). An example Matlab m-file using
the exponential velocity profile (8.48) can be found in the supplementary material.
The steady-state simulations in this paper were performed on a 200 node grid in
z, using a relative error tolerance of 10−6. Although these Galerkin solvers are very
robust, they cannot cope with very small non-dimensional diffusion coefficients or the
zero diffusion limit.

In the scalings (2.24), the horizontal length scale L was left as general as possible
to allow the theory to be easily incorporated into existing models for the bulk flow
of granular materials on rough and smooth beds. In the simulations presented here,
the bulk velocity field is prescribed. Without loss of generality, L is therefore chosen
so that one of the segregation parameters Sνµ is equal to unity. Figure 15 shows the
results of a simulation of reverse distribution grading using segregation parameters
Sls =1, Slm = 0.8 and Sms = 0.5, and a relatively small diffusive remixing coefficient
Dr = 0.01. This is an example of a ternary mixture that lies in region Ω+

3 , defined
in (8.60), and the diffusive solution is expected to be close to the non-diffusive
shock solution constructed in § 8. The grey-shaded contour plots in figure 15(a–c)
show the concentration of large, medium and small particles respectively. This
way of representing the concentration is motivated by the time-averaged images
that Wiederseiner et al. (2011) used to visualize the concentration in bi-disperse
experiments. To obtain similar images for a ternary mixture, the experiments would
have to be repeated three times, using dark particles for the constituent of interest,
and light particles for the other two. For comparison with the non-diffuse case the
shocks, which are not degenerate in that particle type, have been superposed on top of
each concentration plot using solid lines. With a diffusion coefficient Dr = 0.01, they
very closely delineate the regions of high and low concentrations in the diffuse theory.

Figure 15(d ) shows the concentration profile with depth of the large, medium and
small particles at x =2.1, where the solution is close to its steady uniform state.
Even though the large particle inflow concentration φl

0 = 1/2, the large particles
are compressed into a very thin near surface layer, due to the highly nonlinear
exponential velocity field when β = 3.3, as discussed in § 8.5. In contrast, the small
particles, which have an inflow concentration φs

0 = 1/6, occupy nearly half the flow
depth. The medium-sized particles, which are sandwiched in between, have an inflow
concentration φm

0 = 1/3. The layer is slightly thinner than an avalanche without any
shear, but it lies considerably higher in the flow. The inverse length scale of the smooth
transition between the inversely graded layers in the steady uniform state is set by the
Péclet number, Pe. This is a measure of the ratio of the segregation transport rate to
the rate of diffusion (Gray & Chugunov 2006). In a bi-disperse mixture, there is just
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Figure 15. In (a–c) are shaded contour plots in (x, z) of the steady-state concentration of large,
medium and small particles, for segregation parameters Sls = 1, Slm = 0.8 and Sms = 0.5, inflow
concentrations φl

0 = 1/2, φm
0 = 1/3 and φs

0 = 1/6, and an exponential velocity profile u(z) with
β = 3.3. The diffusive remixing coefficient Dr =0.01. For comparison with the non-diffusive
case, the non-degenerate shocks are shown by solid lines. The plots use 64 grey levels and a
scale with 11 levels is shown in (a). In (d ), the final concentration profile at x = 2.1 is plotted
for the large, medium and small particles.

a single Péclet number, but in a ternary mixture there are three

Pels = Sls/Dr, Pelm = Slm/Dr, Pems = Sms/Dr. (9.6)

For the example in figure 15, these Péclet numbers are 100, 80 and 50, respectively.
The length scale of the diffuse transition between medium and small particles is
therefore slightly longer than that between medium and large particles in the steady
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Figure 16. In (a–c) are shaded contour plots in (x, z) of the steady-state concentration of large,
medium and small particles, for segregation parameters Sls = 1, Slm = 0.8 and Sms = 0.5, inflow
concentrations φl

0 = 1/2, φm
0 = 1/3 and φs

0 = 1/6, and an exponential velocity profile u(z) with
β =3.3. The diffusive remixing coefficient Dr = 0.05. For comparison with the non-diffusive
case, the non-degenerate shocks are shown by solid lines. The plots use 64 grey levels and a
scale with 11 levels is shown in (a). In (d ), the final concentration profile at x = 2.1 is plotted
for the large, medium and small particles.

uniform state, although they are both sharp. Wiederseiner et al. (2011) inferred Péclet
numbers between 10 and 20 from their bi-disperse experiments, and figure 16 shows
another simulation with the same segregation parameters, inflow concentrations and
exponential velocity field, but a diffusion coefficient Dr = 0.05. This gives Péclet
numbers Pels = 20, Pelm = 16 and Pems = 10, which make these results potentially
representative of real experiments. Indeed, the regions of high concentration of the
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large, medium and small particles are very similar to the inversely graded avalanche
at the surface of the rotating drum experiment shown in figure 2. The shock solutions,
shown by lines in figure 16(a–c), still give an approximate position for regions of high
concentrations of large medium and small particles, but the transitions are now much
smoother. Indeed for a mixture with segregation parameters in Ω+

3 , the transitions
between the large and medium, and medium and small particles, are more smeared
out than they would be for a bi-disperse mixture of large and small particles, because
the Péclet numbers are lower. In general, as more constituents with lower relative
segregation rates are added to the mixture, the steady uniform state will become
increasingly diffuse and harder to measure and interpret. Nevertheless, even such
diffuse segregation can have important consequences for the properties of the mixture
and may have a feedback on the bulk motion of the grains.

10. Reverse coarse-tail grading
Geologists often encounter reverse coarse-tail grading in pyroclastic flow deposits

(see e.g. Cas & Wright 1987; Branney & Kokelaar 1992; Palladino & Valentine 1995;
Hiscott 2003). Although there is still some debate about exactly why it develops
(Cagnoli & Manga 2005) and whether it is representative of the size distribution in
the parent flow (Branney & Kokelaar 1992), it is possible to use the multi-component
theory to produce a highly simplified model of it. Within the three-component mixture
framework the coarse tail will comprise the large and the medium-sized particles and
all the fine-grained material, which does not segregate from each other, will be lumped
into a single class of small grains. Consider what happens when the small particles do
not segregate from the large or the medium-sized particles either and the segregation
rates are

Sls = 0 and Sms = 0. (10.1)

This is a rather extreme example of a mixture that lies in the region of parameter space
Ω2, defined in (5.11). With these assumptions, the steady-state segregation–remixing
equations (9.1) and (9.2) reduce to

u
∂φl

∂x
=

∂

∂z

(
−Slmφl(1 − φl − φs) + Dr

∂φl

∂z

)
, (10.2)

u
∂φs

∂x
=

∂

∂z

(
Dr

∂φs

∂z

)
, (10.3)

where the last equation uncouples from the system. This is a simple diffusion equation
and the initial concentration of small particles φs(0, z) will therefore be diffused until
it reaches a constant value throughout the avalanche depth. In the case of the
homogeneous inflow problem, the initial condition (8.8) implies that it is already at a
constant state φs(0, z) = φs

0. This will remain unchanged with increasing downstream
distance. The same Galerkin finite element method, as described in § 9, can be used
to solve the system. The results are shown in figure 17 for the case Slm =1 and
Dr =0.01. Figure 17(c) shows that the small particles are at the inflow concentration
φs

0 throughout the avalanche as expected, while plots in figure 17(a,b) look very
similar to the segregation structure in a bi-disperse mixture. There are, however,
some subtle differences here. Firstly, the maximum concentrations of the large- and
medium-sized particles is lower, because the small particles already take up one third
of the available space, and secondly the distance for segregation is enhanced by the
presence of the non-segregating small material.
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Figure 17. In (a–c) are shaded contour plots in (x, z) of the steady-state concentration of
large, medium and small particles, for segregation parameters Sls = 0, Slm = 1 and Sms = 0, inflow
concentrations φl

0 = 1/2, φm
0 = 1/6 and φs

0 = 1/3, and an exponential velocity profile u(z) with
β =3.3. The diffusive remixing coefficient Dr = 0.01. For comparison with the non-diffusive
case, the non-degenerate shocks are shown by solid lines. The plots use 64 grey levels and a
scale with 11 levels is shown in (a). In (d ), the final concentration profile at x = 2.1 is plotted
for the large, medium and small particles.

To understand this in greater detail, it is useful to consider the non-diffusive shock
solution, which is shown using lines superposed on top of the contour plot in figure 17.
In the absence of diffusion, (10.3) implies that the concentration of small particles is
simply a function of height

φs(x, z) = φs(z), (10.4)
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which is set by the inflow conditions. In general, this is not equal to the diffusive
solution, where the variations in the inflow concentration are smeared out and
equilibrated with increasing downstream distance. However, for the special case of a
homogeneous inflow, the condition (8.8) ensures that the small particle concentration
is equal to the inflow concentration everywhere,

φs(x, z) = φs
0, (10.5)

and the diffusive and non-diffusive cases are the same. The depth-averaged velocity
coordinates (x, ψ) introduced in § 8 are again helpful in calculating the shock solution.
The shocks are governed by the jump conditions (8.13)–(8.14). Since the small particle
concentration does not jump across any of the shocks, (8.14) is trivially satisfied.
However, the jump condition for the large particles (8.13) reduces to

�φl�dψ

dx
= �Slmφl(1 − φl − φs

0)�, (10.6)

which implies that

dψ

dx
= Slm(1 − φs

0 − φl
+ − φl

−). (10.7)

A shock develops at the base of the inflow between a region above where the large
particle concentration is equal to the inflow concentration φl

+ =φl
0 and a region below

where there are no large particles φl
− =0. The shock condition (10.7) can therefore be

integrated subject to the condition that ψ(0) = 0, to show that the shock is

ψ = Slmφm
0 x. (10.8)

This is the same shock that would be expected for a bi-disperse mixture of large-
and medium-sized particles (Gray & Thornton 2005). The shock that develops at
the surface of the inflow is more subtle. In particular, it is important to reconsider
the boundary condition (2.32) in the case of a non-segregating component and zero
diffusion. For the small particles, the boundary condition (2.32) is trivially satisfied,
for arbitrary concentrations of small particles, since the small particle segregation
rates Sνs are zero for all ν by (10.1). There is therefore no flux of small particles
across the boundary. The boundary condition for the large particles then becomes

Slmφlφm = 0, (10.9)

which can be satisfied if either φl or φm equals zero. The first of these conditions was
used at the base. However, the latter now implies that the large particle concentration
on the forward side of the shock is

φl
+ = 1 − φs

0, (10.10)

as the small particle concentration is non-zero at the surface. The jump condition
(10.7) with φl

− = φl
0 can then be integrated subject to the condition that ψ(0) = 1, to

show that the top shock is

ψ = 1 − Slmφl
0x, (10.11)

which is not the same as the equivalent shock in a bi-disperse mixture of large- and
medium-sized particles (Gray & Thornton 2005). The two shocks (10.8) and (10.11)
intersect at a downstream distance

xintersect =
1

Slm(1 − φs
0)

, (10.12)
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and at height

ψintersect =
φm

0

1 − φs
0

, (10.13)

which are only the same as those for a bi-disperse mixture of large- and medium-sized
particles (Gray & Thornton 2005) when there are no small particles, φs

0 = 0. The shock
condition (10.7) implies that the final discontinuity, between states φl

+ = 1 − φs
0 above

and φl
− =0 below, is the slope parallel straight line

ψ = ψintersect , x > xintersect . (10.14)

Using the inverse mapping (8.50) for the exponential downstream velocity field (8.48),
the shocks can be mapped back to physical coordinates to give the lines shown in
figure 17. Equation (10.12) shows that the introduction of the non-segregating small
particle constituent significantly delays the segregation of the large and the medium
particles. It raises it from its usual value of unity, when Slm = 1, to 1.5 non-dimensional
units for a concentration φs

0 = 1/3. This is also evident from the relative percolation
velocity of the large- and medium-sized particles, which is given by the difference of
(8.5) and (8.6),

wl − wm = Slm(1 − φs
0). (10.15)

When φs
0 = 0 the relative percolation velocity is the same as in the bi-disperse case,

but as φs
0 is increased the relative percolation velocity in (10.15) decreases, and the

distance for complete segregation (10.12) is increased. Physically, this is an expression
of the fact that large particles will find it increasingly difficult to percolate downwards,
if there are fewer gaps opening up between the medium-sized grains, because of the
presence of the non-segregating fine-grained material. The presence of the small
particles also necessarily reduces the maximum concentrations of the large and the
medium particles, which can be seen in both the contour plots in figure 17(a, b) and
the concentration profiles of the large and medium particles in figure 17(d ).

If Sls � Slm and Sms � Slm, instead of being equal to zero, the segregation–remixing
equations still yield solutions that look very similar to those in figure 17. The only
difference is that the slow percolation of the fine grains is balanced by the diffusive
remixing, which generates a shallow gradient of fines from top to bottom. This
necessarily sets up corresponding gradients of medium and large grains that are
only perceptible in the regions that would otherwise be at a constant concentration.
However, when there is no diffusion, there is nothing to prevent the fines from
segregating out and they eventually collect at the base of the flow. The segregation–
remixing equations are therefore able to capture reverse coarse-tail grading for a
poorly segregating phase, but the non-diffusive theory can only capture it for the
rather extreme case considered here.

11. Discussion and conclusions
This paper significantly generalizes existing bi-disperse size-segregation/remixing

theories for granular avalanches (Savage & Lun 1988; Dolgunin & Ukolov 1995;
Gray & Thornton 2005; Gray & Chugunov 2006; Thornton et al. 2006) to the case of
size segregation of an arbitrary number of discrete grain-size classes. For a mixture of
j constituents, the theory yields a system of j − 1 independent segregation–remixing
equations, which together with the summation condition can be used to determine the
concentrations of each particle size. For a prescribed bulk velocity field, the resulting
systems of parabolic equations can easily be solved using standard Galerkin finite
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element methods that are available in programme libraries. This makes the theory
extremely accessible to non-specialist users. An example Matlab m-file that uses the
pdepe routine to solve for the steady-state segregation of a three-component mixture
as it flows down a chute can be found in the online supplementary material.

Although the theory sets up a very useful framework in which to study size
segregation, it does not give any further information about j (j − 1)/2 independent
segregation rates, or the diffusive remixing coefficient, which are, in general, functions
of the grain-size ratio, the absolute size of the particles, the shear rate, the normal
pressure, the particle density and the local solids volume fraction. These dependencies
must be determined by experiments or molecular dynamics simulations. A significant
advantage of the current theory is that bi-disperse experiments and simulations can
be used to determine the coefficients for the multi-component theory.

Multi-component segregation theory, where the diffusive remixing is neglected,
is the natural generalization of the hyperbolic bi-disperse segregation theories of
Gray & Thornton (2005) and Thornton et al. (2006). When there are three or more
constituents, the system is not necessarily hyperbolic. For instance, a ternary mixture
is guaranteed to be non-strictly hyperbolic only when the segregation rates lie in
regions Ω1, Ω2 and Ω3 of parameter space, defined by (5.10), (5.11) and (5.20). There
is a fourth region Ω4, defined in (5.21), where the characteristic determinant can be
positive or negative, indicating that the system may change from hyperbolic to elliptic,
depending on the evolving concentrations. While such a change is not uncommon
in steady-state problems, it leads to short-wavelength Hadamard instabilities and
ill-posedness in time-dependent problems (Joseph & Saut 1990; Gray 1999; Goddard
2003).

Golick & Daniels (2009) experimentally observed that the segregation rate has
a local maximum at a grain-size ratio of two, which suggests that region Ω4 is
a physically realistic region of parameter space. Fortunately, the diffusive effects
of particle remixing are sufficient to regularize the theory. Numerical simulations
show that the parabolic segregation–remixing equations are still linearly unstable
for certain initial concentrations in region Ω4. These segregation-induced instabilities
allow ‘sawtooth’ stripes to develop for short periods before being annihilated by
growing regions of large and small particles at the surface and base of the flow. The
instability may therefore be difficult to realize in physical experiments.

There are two fundamental types of segregation: inverse distribution grading, in
which the entire grain-size population coarsens upwards (e.g. Cas & Wright 1987;
Hiscott 2003), and reverse coarse-tail grading, where just the coarsest clasts inverse
grade and a fine-grained matrix is found throughout the flow. Distribution grading
occurs when the segregation rates Sνµ are all comparable in magnitude. If the diffusive
remixing is not too large, the avalanche sorts the grains into inversely graded layers,
with high concentrations of large particles at the surface of the avalanche, high
concentrations of fines at the bottom and the high concentrations of medium-sized
particles sandwiched between the two. A physical example of this is shown in the
rotating drum experiment in figures 1 and 2. The strength of the smooth transition
between a layer of particles ν that is adjacent to a layer of particles µ is controlled
by the Péclet number

Peνµ = Sνµ/Dr, (11.1)

which determines the inverse length scale of the transition. For a mixture with a range
of non-dimensional segregation rates Sνµ, some of these transitions will be stronger
than others, since the particles all experience the same amount of diffusive remixing
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Dr . In particular, if size class ν is very close to size class µ, then Sνµ will be small, the
Péclet number will be small, the length scale for the transition between the inversely
graded layers will be large, and the segregation between these constituents will be
very diffuse. This is why the segregation is weak in mixtures where there are many
different size classes, which differ only by small increments in grain size. Mixtures
with continuous size distributions can therefore suppress segregation (e.g. Newey et al.
2004; Jha & Puri 2010).

The non-diffuse theory yields simple insights into the process of size segregation
in these systems. In this paper, an exact solution for the segregation of a ternary
mixture from a homogeneously mixed inflow condition has been constructed, which
is valid for all inflow concentrations provided that the segregation parameters lie
in Ω+

3 , which is defined in (8.60). The solution consists of six regions of constant
concentration that are separated by eight shocks that accurately delineate the regions
of high and low concentration at high Péclet numbers. It is also able to explain
the nonlinear stretching effects that the prescribed velocity profiles have on the final
heights of the inversely graded layers. This detailed understanding of the solution
also leads to a very simple upper bound for the total segregation distance. This is
equal to the segregation distance of the bi-disperse sub-mixture of medium and small
grains, or large and medium grains, that segregates least well. The upper bound for
the total segregation distance from a homogeneous inflow for cases that do not satisfy
the existence conditions (8.51) has not been investigated. However, it is tempting to
suppose that it is determined by the segregation distance of the pair of sub-mixtures,
over the whole mixture, that segregate least well, i.e.

xtotal � max(xls, xlm, xms) = max

(
1

Sls

,
1

Slm

,
1

Sms

)
, (11.2)

which is the natural extension of the result (8.72) to cases where xls can be greater
than xlm or xms . Indeed this concept is easily generalizable to a mixture with any
number of constituents. This seems physically reasonable, but it is a conjecture, not
a proved result.

The framework of multi-component size segregation theory also allows a simple
exact solution for reverse coarse-tail grading to be constructed. Here the large- and
medium-sized particles reverse grade, but the fine particle matrix is found everywhere.
This shows that the introduction of a component that does not segregate well
from any of the other constituents can significantly extend the distance for total
segregation. Such mixtures exist, as geologists regularly see such grading in deposits
from pyroclastic flows, but there is still considerable debate about the dominant
segregation mechanisms in this case (Cagnoli & Manga 2005), as well as how the
stationary deposits are related to the flowing avalanche (Branney & Kokelaar 1992).
There may be considerable technological benefit in studying their properties, however,
as they may suppress segregation sufficiently to keep granular materials reasonably
well mixed when they flow over shorter distances.

This research was performed during two research visits to the Hydraulics
Laboratory at EPFL Lausanne and was supported by generous funding from
the School of Architecture, Civil and Environmental Engineering. Nico Gray
also acknowledges support from NERC grants NER/A/S/2003/00439 and
NE/E003206/1, as well as an EPSRC Advanced Research Fellowship GR/S50052/01
and GR/S50069/01. Christophe Ancey is grateful for the financial support provided
by the Swiss National Science Foundation under grant number 200021-129538, the



Multi-component particle-size segregation in granular avalanches 585

competence centre in Mobile Information and Communication Systems (a centre
supported by the Swiss National Science Foundation under grant number 5005-
67322, MICS project), the competence centre in Environmental Sciences (TRAMM
project) and the Swiss Federal Energy Agency.

Supplementary material is available at journals.cambridge.org/flm.

REFERENCES

Abramowitz, M. & Stegun, I. 1970 Handbook of Mathematical Functions , 9th edn., § 3.3.7. Dover.

Bagnold, R. A. 1954 Experiments on gravity-free dispersion of large solid spheres in a Newtonian
fluid under shear. Proc. R. Soc. Lond. A 225, 49–63.

Bartelt, P. & McArdell, B. W. 2009 Granulometric investigations of snow avalanches. J. Glaciol.
55 (193), 829–833.
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